Geometric Spaghetti

Topic

- Explore convex polygons

Objectives

Students will:

- Demonstrate an understanding of the characteristics of convex polygons
- Understand the necessary conditions for congruent triangles
- Learn through inquiry
- Work collaboratively to develop a general rule for the lengths of the sides of convex polygons

Timeline

- 10-20 minutes for students to generate a hypothesis and test it to form a rule

WICR Strategies

- Writing to Learn
- Write a hypothesis
- Inquiry
- Test a hypothesis
- Develop a general rule based on a tested hypothesis
- Collaboration
- Work in a small group to develop and test a hypothesis

NCTM Standards

Focal Point Grade 8

Geometry and Measurement: Analyzing two- and three-dimensional space and figures by using distance and angle

Algebra

Instructional programs from pre-kindergarten through grade 12 should enable all students to represent and analyze mathematical situations and structures using algebraic symbols.

Geometry

Instructional programs from pre-kindergarten through grade 12 should enable all students to analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships.

Representation

Instructional programs from pre-kindergarten through grade 12 should enable all students to create and use representations to organize, record, and communicate mathematical ideas.

Rationale

Learning through inquiry is a critical skill. Students who interact with concepts will retain more for longer periods. In the "Geometric Spaghetti" activity students will be provided with the opportunity to generate hypotheses and quickly test them to form a general rule that will serve them well in their plane geometry courses.

Vertical Alignment

- This activity enables young students to discover the characteristics of polygons in a non-threatening way. The activity can be used when polygons are first introduced in the middle level and also used as students understanding of general rules of polygons and three-dimensional shapes expands in later math classes.

Materials/Preparation

- Paper
- Pencil
- Uncooked spaghetti

Instructions

- Divide the class into triads.
- Ask students to predict the number of pieces into which a piece of spaghetti will break if held at each end and bent.
- Note: Physicists have reasoned that in nearly all cases the spaghetti will break into more than two pieces. (Many a sleepless night has gone into proving this mathematically.)
- Ask students to write their hypotheses.
- Survey the class for their ideas and then do the experiment.
- Ask students whose spaghetti broke into more than two pieces to use the pieces that they have to construct a convex polygon if possible.
- Ask the students who were unable to construct a convex polygon to display their pieces of spaghetti on an overhead/visual presenter for the class to see.
- Ask students to develop a rule that would explain why some students were able to construct the convex polygon and others were not.
- Ask the student groups to write a general rule for an n-sided polygon.
- Ask students to test their rule with a variety of lengths of spaghetti.
- Ask students to form triangles with three equal length sides of a given length of 10 cm .
- Ask students to compare their triangles with those of other members in their group or with other groups.
- Ask students to construct triangles with side lengths of $10 \mathrm{~cm}, 8 \mathrm{~cm}$ and 15 cm and then compare their triangles with those of other members in their group or other groups.
- Ask students to speculate why the all the triangles in the room are congruent.
- Ask students to speculate about how much must be known about two triangles to ensure that they are congruent.
- Divide the class into five groups and ask them to investigate the five remaining possible combinations of triangle sides and angles. (SAS, SSA, ASA, AAS and AAA)
- Ask each group to present a counterexample of why their combination does not work or a justification as to why it does.

Higher-Level Questions

Level Two

- What is the general rule for n -gons?
- What are the necessary conditions for congruent triangles?

Level Three

- Does the general rule for n -gons apply for concave polygons?
- Are there any generalizations that might be drawn for three-dimensional objects?
- Compare the characteristics of the congruent triangles and non-congruent triangles when using SSA.

Formative Assessment

- Were students able to work together to construct a general rule for an n-gon?
- Were students able to write and test a hypothesis?
- Were students able to apply their rule to a variety of polygons?
- Did students develop accurate triangle conjectures?

